Makalah Sistem penunjang keputusan


PENDAHULUAN

Latar Belakang

Dewasa ini perkembangan teknologi informasi sudah sedemikian pesat. Perkembangan yang pesat tidak hanya teknologi perangkat keras dan perangkat lunak saja, tetapi metode komputasi juga ikut berkembang. Salah satu metode komputasi yang cukup berkembang saat ini adalah metode sistem pengambilan keputusan (Decisions Support System). Dalam teknologi informasi, sistem pengambilan keputusan merupakan cabang ilmu yang letaknya diantara system informasi dan sistem cerdas.

Sistem pengambilan keputusan juga membutuhkan teknologi informasi, hal ini dikarenakan adanya era globalisasi, yang menuntut sebuah perusahaan untuk bergerak cepat dalam mengambil suatu keputusan dan tindakan. Dengan mengacu kepada solusi yang diberikan oleh metode AHP (Analytical Hierarcy Process) dalam membantu membuat keputusan, seorang decision maker dapat mengambil keputusan tentang pemilihan supplier secara objektif berdasarkan multi kriteria yang ditetapkan.
Metode AHP adalah metode pengambilan keputusan yang multi kriteria, sedangkan pengambilan keputusan dibidang pembelian juga mengandalkan kriteria-kriteria yaitu kualitas barang, kecepatan pengiriman barang, harga barang dan status supplier. Dengan melihat adanya kriteria-kriteria yang dipergunakan untuk mengambil keputusan, maka akan sangat cocok untuk menggunakan metode AHP dengan multi kriteria.
Permasalahan
Adapun permasalahan yang timbul ini disebabkan seseorang menemui berbagai kesulitan dalam mengambil keputusan dalam pemilihan kriteria diantaranya adalah kesulitan dalam criteria dalam pemilihan sepeda motor yang nantinya akan dia beli yaitu : sepeda motornya memiliki desain yang bagus, berkualitas serta irit dalam bahan bakar.
Tujuan
Tujuan dari penulisan ini adalah memberi pengetahuan tentang arti dari metode AHP dan untuk membuat keputusan yang dapat membantu pihak-pihak tertentu dalam mengambil keputusan yang terbaik untuk mencapai hasil yang maksimal.

BAB II

ISI


Pengertian Sistem Penunjang Keputusan

Konsep Sistem Pendukung Keputusan (SPK) / Decision Support Sistem (DSS) pertama kali diungkapkan pada awal tahun 1970-an oleh Michael S. Scott Morton dengan istilah Management Decision Sistem. Sistem tersebut adalah suatu sistem yang berbasis komputer yang ditujukan untuk membantu pengambil keputusan dengan memanfaatkan data dan model tertentu untuk memecahkan berbagai persoalan yang tidak terstruktur.Istilah SPK mengacu pada suatu sistem yang memanfaatkan dukungan komputer dalam proses pengambilan keputusan.

Beberapa Definisi Lain dari Sistem Penunjang Keputusan

1.       Little (1970)
Sistem pendukung keputusan adalah sebuah himpunan/kumpulan prosedur berbasis model untuk memproses data dan pertimbangan untuk membantu manajemen dalam pembuatan keputusannya.

2.  Alter (1990)
membuat definisi sistem pendukung keputusan dengan memabandingkannya dengan sebuah sistem pemrosesan data elektronik (PDE) / Electronic Data Processing tradisional dalam 5 hal :

SPK
Penggunaan :Aktif
Pengguna :Manajemen
Tujuan :Efektifitas
Time horizon :Sekarang dan masa depan
Kelebihan : Fleksibilitas

PDE
Penggunaan : Pasif
Pengguna : Operator/Pegawai
Tujuan : Efisiensi Mekanis
Time horizon :Masa Lalu
Kelebihan :Konsistensi


3. Keen (1980)
Sistem pendukung keputusan adalah sistem berbasis komputer yang dibangun lewat sebuah proses adaptif dari pembelajaran, pola-pola penggunan dan evolusi sistem.

4. Bonczek (1980)
Sistem pendukung keputusan sebagai sebuah sistem berbasis komputer yang terdiri atas komponen-komponen antara lain komponen sistem bahasa (language), komponen sistem pengetahuan (knowledge) dan komponen sistem pemrosesan masalah (problem processing) yang saling berinteraksi satu dengan yang lainnya.

5. Hick (1993)
Sistem pendukung keputusan sebagai sekumpulan tools komputer yang terintegrasi yang mengijinkan seorang decision maker untuk berinteraksi langsung dengan komputer untuk menciptakan informasi yang berguna dalam membuat keputusan semi terstruktur dan keputusan tak terstruktur yang tidak terantisipasi.

6. Man dan Watson
Sistem pendukung keputusan merupakan suatu sistem yang interaktif, yang membantu pengambil keputusan melalui penggunaan data dan model-model keputusan untuk memecahkan masalah yang sifatnya semi terstruktur maupun yang tidak terstruktur.

7. Moore and Chang
Sistem pendukung keputusan dapat digambarkan sebagai sistem yang berkemampuan mendukung analisis ad hoc data, dan pemodelan keputusan, berorientasi keputusan, orientasi perencanaan masa depan, dan digunakan pada saat-saat yang tidak biasa.

8. Bonczek (1980)
Sistem pendukung keputusan sebagai sebuah sistem berbasis komputer yang terdiri atas komponen-komponen antara lain komponen sistem bahasa (language), komponen sistem pengetahuan (knowledge) dan komponen sistem pemrosesan masalah.

9. Turban & Aronson (1998)
Sistem penunjang keputusan sebagai sistem yang digunakan untuk mendukung dan membantu pihak manajemen melakukan pengambilan keputusan pada kondisi semi terstruktur dan tidak terstruktur. Pada dasarnya konsep DSS hanyalah sebatas pada kegiatan membantu para manajer melakukan penilaian serta menggantikan posisi dan peran manajer.

10. Raymond McLeod, Jr. (1998)
Sistem pendukung keputusan merupakan sebuah sistem yang menyediakan kemampuan untuk penyelesaian masalah dan komunikasi untuk permasalahan yang bersifat semi-terstruktur.


Macam – Macam Metode Sisem Penunjang Keputusan

1.       Metode Sistem pakar
2.       Metode Regresi linier
3.       Metode B/C Ratio
4.       Metode AHP
5.       Metode IRR
6.       Metode NPV
7.       Metode FMADM
8.       Metode SAW

Pengertian Metode AHP

Metode AHP dikembangkan oleh Thomas L. Saaty, seorang ahli matematika. Metode ini adalah sebuah kerangka untuk mengambil keputusan dengan efektif atas persoalan yang kompleks dengan menyederhanakan dan mempercepat proses pengambilan keputusan dengan memecahkan persoalan tersebut kedalam bagian-bagiannya, menata bagian atau variabel ini dalam suatu susunan hirarki, member nilai numerik pada pertimbangan subjektif tentang pentingnya tiap variabel dan mensintesis berbagai pertimbangan ini untuk menetapkan variabel yang mana yang memiliki prioritas paling tinggi dan bertindak untuk mempengaruhi hasil pada situasi tersebut. Metode AHP ini membantu memecahkan persoalan yang kompleks dengan menstruktur suatu hirarki kriteria, pihak yang berkepentingan, hasil dan dengan menarik berbagai pertimbangan guna mengembangkan bobot atau prioritas. Metode ini juga menggabungkan kekuatan dari perasaan dan logika yang bersangkutan pada berbagai persoalan, lalu mensintesis berbagai pertimbangan yang beragam menjadi hasil yang cocok dengan perkiraan kita secara intuitif sebagaimana yang dipresentasikan pada pertimbangan yang telah dibuat. (Saaty, 1993).
Proses hierarki adalah suatu model yang memberikan kesempatan bagi perorangan atau kelompok untuk membangun gagasan-gagasan dan mendefinisikan persoalan dengan cara membuat asumsi mereka masing-masing dan memperoleh pemecahan yang diinginkan darinya. Ada dua alasan utama untuk menyatakan suatu tindakan akan lebih baik dibanding tindakan lain. Alasan yang pertama adalah pengaruh-pengaruh tindakan tersebut kadang-kadang tidak dapat dibandingkan karena sutu ukuran atau bidang yang berbeda dan kedua, menyatakan bahwa pengaruh tindakan tersebut kadang-kadang saling bentrok, artinya perbaikan pengaruh tindakan tersebut yang satu dapat dicapai dengan pemburukan lainnya. Kedua alasan tersebut akan menyulitkan dalam membuat ekuivalensi antar pengaruh sehingga diperlukan suatu skala luwes yang disebut prioritas.



Prinsip Dasar dan Aksioma AHP


AHP didasarkan atas 3 prinsip dasar yaitu: 

1. Dekomposisi
Dengan prinsip ini struktur masalah yang kompleks dibagi menjadi bagian-bagian secara hierarki. Tujuan didefinisikan dari yang umum sampai khusus. Dalam bentuk yang paling sederhana struktur akan dibandingkan tujuan, kriteria dan level alternatif. Tiap himpunan alternatif mungkin akan dibagi lebih jauh menjadi tingkatan yang lebih detail, mencakup lebih banyak kriteria yang lain. Level paling atas dari hirarki merupakan tujuan yang terdiri atas satu elemen. Level berikutnya mungkin mengandung beberapa elemen, di mana elemen-elemen tersebut bisa dibandingkan, memiliki kepentingan yang hampir sama dan tidak memiliki perbedaan yang terlalu mencolok. Jika perbedaan terlalu besar harus dibuatkan level yang baru. 

2. Perbandingan penilaian/pertimbangan (comparative judgments). 
Dengan prinsip ini akan dibangun perbandingan berpasangan dari semua elemen yang ada dengan tujuan menghasilkan skala kepentingan relatif dari elemen. Penilaian menghasilkan skala penilaian yang berupa angka. Perbandingan berpasangan dalam bentuk matriks jika dikombinasikan akan menghasilkan prioritas. 

3. Sintesa Prioritas
Sintesa prioritas dilakukan dengan mengalikan prioritas lokal dengan prioritas dari kriteria bersangkutan di level atasnya dan menambahkannya ke tiap elemen dalam level yang dipengaruhi kriteria. Hasilnya berupa gabungan atau dikenal dengan prioritas global yang kemudian digunakan untuk memboboti prioritas lokal dari elemen di level terendah sesuai dengan kriterianya. 

AHP didasarkan atas 3 aksioma utama yaitu :


1.  Aksioma Resiprokal
Aksioma ini menyatakan jika PC (EA,EB) adalah sebuah perbandingan berpasangan antara elemen A dan elemen B, dengan memperhitungkan C sebagai elemen parent, menunjukkan berapa kali lebih banyak properti yang dimiliki elemen A terhadap B, maka PC (EB,EA)= 1/ PC (EA,EB). Misalnya jika A 5 kali lebih besar daripada B, maka B=1/5 A.

2.  Aksioma Homogenitas
Aksioma ini menyatakan bahwa elemen yang dibandingkan tidak berbeda terlalu jauh. Jika perbedaan terlalu besar, hasil yang didapatkan mengandung nilai kesalahan yang tinggi. Ketika hirarki dibangun, kita harus berusaha mengatur elemen-elemen agar elemen tersebut tidak menghasilkan hasil dengan akurasi rendah dan inkonsistensi tinggi.




3.  Aksioma Ketergantungan 
Aksioma ini menyatakan bahwa prioritas elemen dalam hirarki tidak bergantung pada elemen level di bawahnya. Aksioma ini membuat kita bisa menerapkan prinsip komposisi hirarki.

Kelebihan dan Kekurangan dalam Metode AHP

Kelebihan

1.      Struktur yang berhierarki sebagai konskwensi dari kriteria yang dipilih sampai pada sub-sub kriteria yang paling dalam.

2.      Memperhitungkan validitas sampai batas toleransi inkonsentrasi sebagai kriteria dan alternatif yang dipilih oleh para pengambil keputusan.

3.      Memperhitungkan daya tahan atau ketahanan output analisis sensitivitas pengambilan keputusan.

Metode “pairwise comparison” AHP mempunyai kemampuan untuk memecahkan masalah yang diteliti multi obyek dan multi kriteria yang berdasar pada perbandingan preferensi dari tiap elemen dalam hierarki. Jadi model ini merupakan model yang komperehensif. Pembuat keputusan menetukan pilihan atas pasangan perbandingan yang sederhana, membengun semua prioritas untuk urutan alternatif. “ Pairwaise comparison” AHP mwenggunakan data yang ada bersifat kualitatif berdasarkan pada persepsi, pengalaman, intuisi sehigga dirasakan dan diamati, namun kelengkapan data numerik tidak menunjang untuk memodelkan secara kuantitatif.

Kelemahan

1.       Ketergantungan model AHP pada input utamanya.
Input utama ini berupa persepsi seorang ahli sehingga dalam hal ini melibatkan subyektifitas sang ahli selain itu juga model menjadi tidak berarti jika ahli tersebut memberikan penilaian yang keliru.
2.       Metode AHP ini hanya metode matematis tanpa ada pengujian secara statistik
sehingga tidak ada batas kepercayaan dari kebenaran model yang terbentuk


Tahapan Dalam Metode AHP

Langkah-langkah AHP

Langkah – langkah  dan proses Analisis Hierarki Proses (AHP) adalah sebagai berikut
1.      Memdefinisikan permasalahan dan penentuan tujuan. Jika AHP digunakan untuk memilih alternatif atau menyusun prioriras alternatif, pada tahap ini dilakukan pengembangan alternatif.
2.      Menyusun masalah kedalam hierarki sehingga permasalahan yang kompleks dapat ditinjau dari sisi yang detail dan terukur.
3.      Penyusunan prioritas untuk tiap elemen masalah pada hierarki. Proses ini menghasilkan bobot atau kontribusi elemen terhadap pencapaian tujuan sehingga elemen dengan bobot tertinggi memiliki prioritas penanganan. Prioritas dihasilkan dari suatu matriks perbandinagan berpasangan antara seluruh elemen pada tingkat hierarki yang sama.
4.      Melakukan pengujian konsitensi terhadap perbandingan antar elemen yang didapatan pada tiap tingkat hierarki.
1.      Pengambilan data dari obyek yang diteliti.
2.      Menghitung data dari bobot perbandingan berpasangan responden dengan metode “pairwise comparison” AHP berdasar hasil kuisioner.
3.      Menghitung rata-rata rasio konsistensi dari masing-masing responden.
4.      Pengolahan dengan metode “pairwise comparison” AHP.
5.      Setelah dilakukan pengolahan tersebut, maka dapat disimpulkan adanya konsitensi   dengan tidak, bila data tidak konsisten maka diulangi lagi dengan pengambilan data seperti semula, namun bila sebaliknya maka digolongkan data terbobot yang selanjutnya dapat dicari nilai beta (b).

Contoh Kasus


Adi berulang tahun yang ke-17, Kedua orang tuanya janji untuk membelikan sepeda motor sesuai yang di inginkan Adi. Adi memiliki pilihan yaitu motor Ninja, Tiger dan Vixsion . Adi memiliki criteria dalam pemilihan sepeda motor yang nantinya akan dia beli yaitu : sepeda motornya memiliki desain yang bagus, berkualitas serta irit dalam bahan bakar.



Penyelesaian
1.     Tahap pertama
Menentukan botot dari masing – masig kriteria.
Desain lebih penting 2 kali dari pada Irit
Desain lebih penting 3 kali dari pada Kualitas
Irit lebih penting 1.5 kali dari pada kualitas

Pair Comparation Matrix

Kriteria
Desain
Irit
Kualitas
Priority Vector
Desain
1
2
3
0,5455
Irit
0,5
1
1,5
0,2727
Kualitas
0,333
0,667
1
0,1818
Jumlah
1,833
3,667
5,5
1,0000
Pricipal Eigen Value (lmax)

3,00
Consistency Index (CI)

0
Consistency Ratio (CR)

0,0%

Dari gambar diatas, Prioity Vector (kolom paling kanan) menunjukan bobot dari masing-masing kriteria, jadi dalam hal ini Desain merupakan bobot tertinggi/terpenting menurut Adi, disusul Irit dan yang terakhir adalah Kualitas.
Cara membuat table seperti di atas
  1. Untuk perbandingan antara masing – masing kriteria berasal dari bobot yang telah di berikan ADI pertama kali.
  2. Sedangkan untuk Baris jumlah, merupakan hasil penjumalahan vertikal dari masing – masing kriteria.
  3. Untuk Priority Vector  di dapat dari  hasil penjumlahan dari semua sel disebelah Kirinya (pada baris yang sama) setelah terlebih dahulu dibagi dengan  Jumlah yang ada dibawahnya, kemudian hasil penjumlahan tersebut dibagi dengan angka 3.
  4. Untuk mencari Principal Eigen Value (lmax)
Rumusnya adalah menjumlahkan  hasil perkalian antara sel pada baris jumlah dan sel pada kolom Priority Vector
  1. Menghitung Consistency Index (CI) dengan rumus  CI = (lmax-n)/(n-1)
  2. Sedangkan untuk menghitung nilai  CR
  3. Menggunakan rumuas CR = CI/RI , nilai RI didapat dari
n
1
2
3
4
5
6
7
8
9
10
RI
0
0
5,8
0,9
1,12
1,24
1,32
1,41
1,45
1,49

Jadi untuk n=3, RI=0.58. 
Jika hasil perhitungan  CR lebih kecil atau sama dengan 10% ,  ketidak konsistenan masih bisa diterima, sebaliknya jika lebih besar dari 10%, tidak bisa diterima.
2.     Tahap Kedua
Kebetulan teman ADI memiliki teman yang memiliki motor yang sesuai dengan pilihan ADI. Setelah Adi mencoba motor temannya tersebut adi memberikan penilaian ( disebut sebagai pair-wire comparation)
Desain lebih penting 2 kali dari pada Irit
Desain lebih penting 3 kali dari pada Kualitas
Irit lebih penting 1.5 kali dari pada kualitas

Ninja  4 kali desainnya lebih baik daripada tiger
Ninja  3 kali desainnya lebih baik dari pada vixsion
tiger 1/2 kali desainnya lebih baik dari pada Vixsion

Ninja 1/3 kali lebih irit daripada tiger
Ninja 1/4 kali  lebih irit dari pada vixsion
tiger 1/2 kali lebih irit dari pada Vixsion

Berdasarkan penilaian tersebut maka dapat di buat table (disebut Pair-wire comparation matrix)
Desain
Ninja
Tiger
Vixsion
Priority Vector
Ninja
1
4
3
0,6233
Tiger
0,25
1
0,5
0,1373
Vixsion
0,333
2
1
0,2394
Jumlah
1,583
7
4,5
1,0000
Pricipal Eigen Value (lmax)

3,025
Consistency Index (CI)


0,01
Consistency Ratio (CR)


2,2%







Irit
Ninja
Tiger
Vixsion
Priority Vector
Ninja
1
0,333
0,25
0,1226
Tiger
3
1
0,5
0,3202
Vixsion
4
2
1
0,5572
Jumlah
8
3,333
1,75
1,0000
Pricipal Eigen Value (lmax)

3,023
Consistency Index (CI)


0,01
Consistency Ratio (CR)


2,0%

Irit
Ninja
Tiger
Vixsion
Priority Vector
Ninja
1,00
0,010
0,10
0,0090
Tiger
100,00
1,00
10,0
0,9009
Vixsion
10,00
0,100
1,0
0,0901
Jumlah
111,00
1,11
11,10
1,0000
Pricipal Eigen Value (lmax)

3
Consistency Index (CI)


0
Consistency Ratio (CR)


0,0%

3.     Tahap ketiga
Setelah mendapatkan bobot untuk ketiga kriteria dan skor untuk masing-masing kriteria bagi ketiga motor pilihannya, maka langkah terakhir adalah menghitung total skor untuk ketiga motor tersebut.  Untuk itu ADI akan merangkum semua hasil penilaiannya tersebut dalam bentuk tabel yang disebut Overall composite weight, seperti berikut.
Overall composit weight
weight
Ninja
Tiger
Vixsion
Desain
0,5455
0,6233
0,1373
0,2394
Irit
0,2727
0,1226
0,3202
0,5572
Kualitas
0,1818
0,0090
0,9009
0,0901
Composit Weight

0,3751
0,3260
0,2989

Cara membuat Overall Composit weight adalah
·  Kolom Weight diambil dari kolom Priority Vektor dalam matrix Kriteria.
·  Ketiga kolom lainnya (Ninja, Tiger dan Vixsion) diambil dari kolom Priority Vector ketiga matrix Desain, Irit dan Kualitas.
·  Baris Composite Weight diperoleh dari jumlah hasil perkalian sel diatasnya dengan weight. 
Berdasarkan table di atas maka dapat di ambil kesimpulan bahwa yang memiliki skor paling tinggi adalah Ninja yaitu 0,3751 , sedangkan disusul tiger dengan skor 0,3260 dan yang terakhir adalah Vixsion dengan skor 0,2989. Akhirnya Adi akan membeli motor Ninja



BAB III

PENUTUP


Kesimpulan yang dapat diambil adalah sebagai berikut:
  • Metode  ini mampu untuk menghasilkan suatu keputusan yang tepat.
  • Dengan memakai metode ini, kesalahan-kesalahan yang dilakukan ketika pengambilan keputusan seperti keterlambatan dalam mengambil keputusan dapat berkurang.
  • Aplikasi dibuat fleksibel sehingga dapat memungkinkan personal maupun departemen untuk dapat mengubah nilai dari kriteria-kriteria yang ada.


Daftar Pustaka


Posting Lebih Baru Posting Lama

2 Responses to “Makalah Sistem penunjang keputusan”